Department of

October 2019 November 2019December 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr SaSuMo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 3 4 5 6 7 6 7 8 9 10 11 12 3 4 5 6 7 8 989 10 11 12 13 14 13 14 15 16 17 18 19 10 11 12 13 14 15 16 15 16 17 18 19 20 21 20 21 22 23 24 25 26 17 18 19 20 21 22 23 22 23 24 25 26 27 28 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31

Wednesday, November 13, 2019

**Abstract:** Given a countable Borel equivalence relation $E$ on a standard Borel space, we give a construction of a hyperfinite subequivalence relation $F \subseteq E$ such that every $E$-invariant $E$-ergodic probability measure $\nu$ is also $F$-ergodic. The construction also yields the uniform ergodic decomposition theorem for $E$.