Department of

November 2019 December 2019January 2020Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa 1 2 1 2 3 4 5 6 7 1 2 3 4 3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 9 10 11 10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17 18 17 18 19 20 21 22 23 22 23 24 25 26 27 28 19 20 21 222324 25 24 25 26 27 28 29 30 29 30 31 26 27 28 29 30 31

Tuesday, December 3, 2019

**Abstract:** We consider the Steklov eigenvalue problem on curvilinear polygons in the plane, with all interior angles measuring less than pi. In this setting, we formulate and prove precise spectral asymptotics, with error converging to zero as the spectral parameter increases. These asymptotics have a surprising dependence on arithmetic properties of the angles. Moreover, the problem turns out to have an interesting relationship to a scattering-type eigenvalue problem on the one-dimensional boundary of the polygon, viewed as a quantum graph.