Department of

Mathematics


Seminar Calendar
for events the day of Tuesday, January 14, 2020.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
    December 2019           January 2020          February 2020    
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
  1  2  3  4  5  6  7             1  2  3  4                      1
  8  9 10 11 12 13 14    5  6  7  8  9 10 11    2  3  4  5  6  7  8
 15 16 17 18 19 20 21   12 13 14 15 16 17 18    9 10 11 12 13 14 15
 22 23 24 25 26 27 28   19 20 21 22 23 24 25   16 17 18 19 20 21 22
 29 30 31               26 27 28 29 30 31      23 24 25 26 27 28 29
                                                                   

Tuesday, January 14, 2020

11:00 am in 241 Altgeld Hall,Tuesday, January 14, 2020

Superimposing theta structure on a generalized modular relation

Atul Dixit (Indian Institute of Technology in Gandhinagar)

Abstract: By a modular relation for a certain function $F$, we mean that which is governed by the map $z\to -1/z$ but not necessarily by $z\to z+1$. Equivalently, the relation can be written in the form $F(\alpha)=F(\beta)$, where $\alpha\beta=1$. There are many generalized modular relations in the literature such as the general theta transformation $F(w,\alpha)=F(iw, \beta)$ or the Ramanujan-Guinand formula $F(z, \alpha)=F(z, \beta)$ etc. The latter, equivalent to the functional equation of the non-holomorphic Eisenstein series on $\mathrm{SL}_{2}(\mathbb{Z})$, admits a beautiful generalization of the form $F(z, w,\alpha)=F(z, iw, \beta)$, that is, one can superimpose theta structure on it.

Recently, a modular relation involving infinite series of the Hurwitz zeta function $\zeta(z, a)$ was obtained. It generalizes a result of Ramanujan from the Lost Notebook. Can one superimpose theta structure on it? While answering this question affirmatively, we were led to a surprising new generalization of $\zeta(z, a)$. We show that this new zeta function, $\zeta_w(z, a)$, satisfies a beautiful theory. In particular, it is shown that $\zeta_w(z, a)$ can be analytically continued to the whole complex plane except $z=1$. Hurwitz's formula for $\zeta(z, a)$ is also generalized in this setting. We also prove a generalized modular relation involving infinite series of $\zeta_w(z, a)$, which is of the form $F(z, w,\alpha)=F(z, iw, \beta)$. This is joint work with Rahul Kumar.