Department of

Mathematics


Seminar Calendar
for events the day of Friday, February 14, 2020.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
     January 2020          February 2020            March 2020     
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
           1  2  3  4                      1    1  2  3  4  5  6  7
  5  6  7  8  9 10 11    2  3  4  5  6  7  8    8  9 10 11 12 13 14
 12 13 14 15 16 17 18    9 10 11 12 13 14 15   15 16 17 18 19 20 21
 19 20 21 22 23 24 25   16 17 18 19 20 21 22   22 23 24 25 26 27 28
 26 27 28 29 30 31      23 24 25 26 27 28 29   29 30 31            
                                                                   

Friday, February 14, 2020

3:00 pm in 347 Altgeld Hall,Friday, February 14, 2020

An Introduction to $L^2$ Cohomology

Gayana Jayasinghe (UIUC Math)

Abstract: We'll see how we can construct quasi isometry invariants and some conformal invariants with function spaces and operators on manifolds (and some more general spaces), and how we can use analysis to study geometric structures

4:00 pm in 341 Altgeld Hall,Friday, February 14, 2020

Prime Number Conjectures

Raghavendra Bhat (University of Illinois at Urbana-Champaign)

Abstract: Freshman math major and author (Math -- A Subtle Language of the Universe) Raghavendra Bhat will present some of his prime number conjectures, which he has presented on many platforms across the world. His talk will focus on his recent conjectures and thoughts on number theory research and math in general.

4:00 pm in 141 Altgeld Hall,Friday, February 14, 2020

Bounds on volumes of mapping tori

Heejoung Kim (UIUC)

Abstract: For a surface $S$ and a homeomorphism $f: S\to S$, the mapping torus of $S$ by $f$ is defined by $M_f=(S\times [0,1])/((x,0)\sim (f(x), 1))$. In particular, for a closed surface $S$ of genus at least 2 and a pseudo-Anosov element $f$ of the mapping class group of $S$, $M_f$ is a hyperbolic manifold. Brock provided bounds of the hyperbolic volume of $M_f$ from a hyperbolic structure on $M_f$ by using its Weil-Petersson metric. And then Agol gave a sharp upper bound for the volume in terms of the translation distance on the pants graph $P(S)$ which is associated with pants decomposition on $S$. In this talk, we will discuss mapping class groups and Agol's proof on the upper bound.