Abstract: Since its inception nearly two centuries ago, what we call "Galois Theory" (say in an undergraduate algebra course) has led to many analogous results, and thus attained the status of a sort of metatheorem. In Galois' case, this concept was applied to fields, yielding an equivalence between some lattice of field extensions and a lattice of subgroups of a corresponding "galois group" ... under certain conditions. Later on, the same concept was shown to be present in Topology, with extensions being replaced by their dual notion of covering spaces, and the galois group being replaced by the fundamental group... again, under certain conditions. Even later, Galois' results for fields were generalized to arbitrary rings, introducing new associated data along the way. In this talk, we explore the process of formally unifying all of these "Galois Theories" into one Galois Principle, with the aim of developing an intuition for identifying some of its infinite use-cases in the wilds of Math (e.g. Algebra, Topology, and Logic). Along the way, I aim to discuss explicitly and to motivate categorification to the working mathematician using the results of this talk as concrete examples.