Department of

Mathematics


Seminar Calendar
for events the day of Friday, March 13, 2020.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
    February 2020            March 2020             April 2020     
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
                    1    1  2  3  4  5  6  7             1  2  3  4
  2  3  4  5  6  7  8    8  9 10 11 12 13 14    5  6  7  8  9 10 11
  9 10 11 12 13 14 15   15 16 17 18 19 20 21   12 13 14 15 16 17 18
 16 17 18 19 20 21 22   22 23 24 25 26 27 28   19 20 21 22 23 24 25
 23 24 25 26 27 28 29   29 30 31               26 27 28 29 30      
                                                                   

Friday, March 13, 2020

4:00 pm in 141 Altgeld Hall,Friday, March 13, 2020

Poincare duality for singular spaces

Gayana Jayasinghe (UIUC)

Abstract: Poincare duality of manifolds is a classical theorem which can be phrased in terms of the homology and cohomology groups of manifolds. However, when we look at singular spaces, this fails to hold for the usual homology and cohomology groups. In the setting of a certain class of singular spaces know as topological pseudomanifolds, which include orbifolds, algebraic varieties, moduli spaces and many other natural objects, one can extend these groups in order to recover some form of Poincare duality. I'll present how this was achieved by Goresky and MacPherson with their Intersection homology, and by Cheeger using L^2 cohomology and explain how they are related to each other, in similar spirit to the equivalence in the smooth setting. I'll only assume a basic knowledge of homology and cohomology.