Department of

March 2020 April 2020 May 2020 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 1 2 3 4 1 2 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9 15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 15 16 22 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23 29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 31

Thursday, April 2, 2020

**Abstract:** I'll describe how sieve theory is actually a question about probability distributions whose low moments agree with the low moments of Poisson distributions. In particular, we can derive Selberg’s “parity problem” without using properties of the Möbius function or the Liouville function - instead, we use the fact that the alternating group forms a subgroup of the symmetric group.