Department of

March 2020 April 2020 May 2020 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 1 2 3 4 1 2 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9 15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 15 16 22 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23 29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 31

Tuesday, April 28, 2020

**Abstract:** Let $G$ be a simple graph with maximum degree $\Delta$. We call $G$ overfull if $|E(G)|>\Delta \lfloor |V(G)|/2\rfloor$. The core of $G$, denoted $G_{\Delta}$, is the subgraph of $G$ induced by its vertices of degree $\Delta$. A classic result of Vizing shows that $\chi'(G)$, the chromatic index of $G$, is either $\Delta$ or $\Delta+1$. It is NP-complete to determine the chromatic index for a general graph. However, if $G$ is overfull then $\chi'(G)=\Delta+1$. Hilton and Zhao in 1996 conjectured that if $G$ is a simple connected graph with $\Delta\ge 3$ and $\Delta(G_\Delta)\le 2$, then $\chi'(G)=\Delta+1$ if and only if $G$ is overfull or $G=P^*$, where $P^*$ is obtained from the Petersen graph by deleting a vertex. This conjecture, if true, implies an easy approach for calculating $\chi'(G)$ for graphs $G$ satisfying the conditions. The progress on the conjecture has been slow: it was only confirmed for $\Delta=3,4$, respectively, in 2003 and 2017. We confirm this conjecture for all $\Delta\ge 4$.

This is joint work with Yan Cao, Guantao Chen and Guangming Jing.

Please Email Sean at SEnglish@illinois.edu for the zoom ID and password