Department of

June 2020 July 2020August 2020Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su MoTuWe Th Fr Sa 1 2 3 4 5 6 1 2 3 4 1 7 8 9 10 11 12 13 5 6 7 8 9 10 11 2 3 4 5 6 7 8 14 15 16 17 18 19 20 12 13 14 15 16 17 18 9 101112 13 14 15 21 22 23 24 25 26 27 19 20 21 22 23 24 25 16 17 18 19 20 21 22 28 29 30 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31

Tuesday, July 14, 2020

**Abstract:** Let $H$ be a graph with vertices $1,2,\ldots,n$ and edge-set $E$. We associate with it a functional that acts on bounded measurable (symmetric) functions $F: \: [0,1]^2 \to \mathbb{R}$, namely $$ t_H(F) \; = \; \int_{[0,1]^n} \prod_{\{i,j\} \in E} F(x_i,x_j) \: dx_1 dx_2 \cdots dx_n \; . $$ This notion arises from counting copies of $H$ in a large graph $F$.

We will review results and open problems in such areas as

Majorization ($H$ majorizes $G$ when $t_H(F) \geq t_G(F)$ for all $F$),

Positivity of $t_H$.

Convexity of $t_H$.

Please contact Sean English at SEnglish (at) illinois (dot) edu for the Zoom ID.