Department of

July 2020August 2020September 2020 Su Mo Tu We Th Fr Sa Su MoTuWe Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 1 1 2 3 4 5 5 6 7 8 9 10 11 2 3 4 5 6 7 8 6 7 8 9 10 11 12 12 13 14 15 16 17 18 9 101112 13 14 15 13 14 15 16 17 18 19 19 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26 26 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30 30 31

Tuesday, August 4, 2020

**Abstract:** Given a positive integer $s$, the $s$-colour size-Ramsey number of a graph $H$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges where in any $s$-colouring of $E(G)$ there is a monochromatic copy of $H$. We prove that, for any positive integers $k$ and $s$, the $s$-colour size-Ramsey number of the $k$th power of any $n$-vertex tree is linear on $n$.

This is a joint work with S. Berger, Y. Kohayakawa, G. S. Maesaka, W. Mendonca, G. O. Mota and O. Parczyk.

Please email Sean English at SEnglish (at) illinois (dot) edu for the Zoom ID.