Department of

August 2020 September 2020October 2020Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su MoTuWe Th Fr Sa 1 1 2 3 4 5 1 2 3 2 3 4 5 6 7 8 6 7 8 9 10 11 12 4 5 6 7 8 9 10 9 10 11 12 13 14 15 13 14 15 16 17 18 19 11 12 13 14 15 16 17 16 17 18 19 20 21 22 20 21 22 23 24 25 26 18 192021 22 23 24 23 24 25 26 27 28 29 27 28 29 30 25 26 27 28 29 30 31 30 31

Monday, September 21, 2020

**Abstract:** For any quasicategory $X$ with objects $w,x$, $\textrm{Hom}(w,x)$ is a Kan complex. Given any edge, $f: x \rightarrow y$ in $X$, we can construct a functor $f_{*}: \textrm{Hom}(w,x) \rightarrow \textrm{Hom}(w,y)$ but this construction is such that for a pair of composable edges, $f: x \rightarrow y$ and $g: y \rightarrow z$, the lifts $g_{*}f_{*}$ and $(gf)_{*}$ are not necessarily equal, only homotopic. Consequently, $\textrm{Hom}(w,-)$ does not induce a functor from $X$ into the category of Kan complexes. We will show how we can `straighten' a homotopy coherent functor (i.e. a left fibration) such as $\textrm{Hom}(w,-)$ into an actual functor between infinity categories. Please email vb8 at illinois dot edu for the zoom details.