Department of

October 2020November 2020December 2020 Su Mo Tu We Th Fr Sa Su Mo TuWeTh Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 242526 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Friday, November 20, 2020

**Abstract:** A metric structure $\mathfrak{M}$ is considered *approximately ultra-homogeneous* if for any finitely generated structure $A =\langle a_1,\dotsc,a_n\rangle$, embeddings $f,g:A \rightarrow \mathfrak{M}$, and $\varepsilon > 0$, there exists an automorphism $\phi$ on $\mathfrak{M}$ such that $d(\phi \circ f (a_i), g(a_i) ) < \varepsilon $. We show that there exists a separable approximately ultra-homogeneous Banach lattice $\mathfrak{BL}$ that is isometrically universal for separable Banach lattices by proving that finitely generated Banach lattices form a metric Fraïssé class. If time permits, we will also explore some interesting properties about $\mathfrak{BL}$.