Department of

Mathematics


Seminar Calendar
for events the day of Tuesday, February 23, 2021.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
     January 2021          February 2021            March 2021     
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
                 1  2       1  2  3  4  5  6       1  2  3  4  5  6
  3  4  5  6  7  8  9    7  8  9 10 11 12 13    7  8  9 10 11 12 13
 10 11 12 13 14 15 16   14 15 16 17 18 19 20   14 15 16 17 18 19 20
 17 18 19 20 21 22 23   21 22 23 24 25 26 27   21 22 23 24 25 26 27
 24 25 26 27 28 29 30   28                     28 29 30 31         
 31                                                                

Tuesday, February 23, 2021

11:00 am in Zoom,Tuesday, February 23, 2021

The Borel C_2-equivariant K(1)-local sphere

William Balderrama (UIUC)

Abstract: I'll talk about the structure of the Borel C_2-equivariant K(1)-local sphere. This captures Im J-type phenomena in C_2-equivariant and R-motivic stable stems, and gives a concise approach to understanding the K(1)-localizations of stunted projective spaces.

For Zoom info, please contact vesna@illinois.edu

1:00 pm in Altgeld Hall,Tuesday, February 23, 2021

Poisson manifolds of strong compact type over 2-tori

Luka Zwann (UICU)

2:00 pm in Zoom,Tuesday, February 23, 2021

The Feasible Region of Hypergraphs

Dhruv Mubayi (University of Illinois, Chicago)

Abstract: Many extremal hypergraph problems seek to maximize the number of edges subject to some local constraints. We aim to gain a more detailed understanding of such problems by studying the maximum subject to an additional global constraint, namely the size of the shadow. Put differently, we seek the pairs $(x,y)$ in the unit square such that there are $F$-free hypergraphs whose shadow density approaches $x$ and edge density approaches $y$. I will give some general results about the shape of this "feasible region" and also extend and improve some classical Turan-type results for particular choices of $F$. This is joint work with Xizhi Liu.

For Zoom information, please email Sean at SEnglish (at) illinois (dot) edu.

3:00 pm in Zoom,Tuesday, February 23, 2021

The Peterson Isomorphism and Quantum Cohomology of the Grassmannian

Elizabeth Milićević   [email] (Haverford College)

Abstract: The Peterson isomorphism directly relates the homology of the affine Grassmannian to the quantum cohomology of any finite flag variety. In the case of a partial flag, Petersonís map is only a surjection, and one needs to quotient by a suitable ideal to map isomorphically onto the quantum cohomology. In this talk, we first provide an exposition of this parabolic Peterson isomorphism in the case of the Grassmannian. We then relate the Peterson isomorphism via Postnikovís strange duality to several quantum-to-affine correspondences on the k-Schur functions representing the homology of the affine Grassmannian. This talk includes joint work with J. Cookmeyer, as well as L. Chen and J. Morse. Please email Colleen at cer2 (at) illinois (dot) edu for the Zoom ID and password.