Department of

February 2021March 2021 April 2021 Su Mo Tu We ThFrSa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 7 8 9 10 11 12 13 7 8 9 10 11 12 13 4 5 6 7 8 9 10 14 15 16 17 18 19 20 14 15 16 17 18 19 20 11 12 13 14 15 16 17 21 22 23 24 252627 21 22 23 24 25 26 27 18 19 20 21 22 23 24 28 28 29 30 31 25 26 27 28 29 30

Monday, March 1, 2021

**Abstract:** An integrable Poisson manifold is said to be of strong compact type if the source 1-connected groupoid integrating it is compact. A trivial class of such manifolds is that of compact symplectic manifolds with finite fundamental group, but beyond that finding examples is difficult. The first non-trivial example was given by D. Martínez Torres in 2014. The construction there is inspired by D. Kotschick’s construction of a free symplectic circle action with contractible orbits. In this talk I will go over the original construction, recalling the relevant results on Poisson manifolds of compact types as well as the geometry of the moduli spaces of K3 surfaces, and then modify the construction to obtain more examples. In the end, we will have for every strongly integral affine 2-torus (i.e. integral affine 2-torus with integral translational part) a Poisson manifold of strong compact type having said torus as its leaf space.