Abstract: Milnor conjecture (1970 by J.Milnor) states that the Milnor K-theory (mod 2) and the Galois/etale cohomology of a field (char not 2) in mod 2 coefficient are equivalent. In 1996, V.Voevodsky proved Milnor conjecture by using new theories and techniques including motivic cohomology, splitting varieties and cohomology operations. Bloch-Kato conjecture, which generalizes Milnor conjecture to mod l coefficients, was also proved in the following years. In the talk, I will start from the Milnor K-theory and its relation with the quadratic forms. I will also introduce the motivic cohomology and the higher dimensional analogues of Hilbert’s Theorem 90. Then, if time allowed, I’ll talk about the strategy of Voevodsky’s proof on mod 2 Milnor conjecture. Please email vb8 at illinois dot edu for the zoom details.