Department of

February 2021 March 2021 April 2021 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 7 8 9 10 11 12 13 7 8 9 10 11 12 13 4 5 6 7 8 9 10 14 15 16 17 18 19 20 14 15 16 17 18 19 20 11 12 13 14 15 16 17 21 22 23 24 25 26 27 21 22 23 24 25 26 27 18 19 20 21 22 23 24 28 28 29 30 31 25 26 27 28 29 30

Tuesday, March 23, 2021

**Abstract:** In 2017, Miller conjectured, based on computational evidence, that for any fixed prime $p$ the density of entries in the character table of $S_n$ that are divisible by $p$ goes to $1$ as $n$ goes to infinity. I’ll describe a proof of this conjecture, which is joint work with K. Soundararajan. I will also discuss the (still open) problem of determining the asymptotic density of zeros in the character table of $S_n$, where it is not even clear from computational data what one should expect.