Abstract: In this talk, we concentrate on determining the maximum number of edges in a hexagon-free planar graphs and we would like to show the nature of these problems (difficulties, necessary results and conjectures). Let $\mathrm{ex}_\mathcal{P}(n, H)$ denote the maximum number of edges in an $n$-vertex planar graph which does not contain $H$ as a subgraph. Dowden obtained exact results for $\mathrm{ex}_\mathcal{P}(n, C_4)$ and $\mathrm{ex}_\mathcal{P}(n, C_5)$, but the case of longer cycles remained open. Later on, Y. Lan, et al. proved that $\mathrm{ex}_\mathcal{P}(n, C_6)\leq \frac{18(n−2)}7$. In this talk I plan to sketch the proof of the tight result $\mathrm{ex}_\mathcal{P}(n, C_6)\leq \frac{5}2n-7$, for all $n\geq 18$, and show infinitely many examples when it is tight. Based on them, we raise a conjecture on $\mathrm{ex}_\mathcal{P}(n, C_k)$, for $k\geq 7$.
Joint work with Debarun Ghosh (CEU), Ryan R. Martin (Iowa State Univ.), Addisu Paulos (CEU), Chuanqi Xiao(CEU)
For Zoom information, please contact Sean at SEnglish (at) illinois (dot) edu.