Department of

April 2021 May 2021June 2021Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr SaSuMo Tu We Th Fr Sa 1 2 3 1 1 2 3 4 5 4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12 11 12 13 14 15 16 17 9 10 11 12 13 14 151314 15 16 17 18 19 18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26 25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30 30 31

Tuesday, March 16, 2021

**Abstract:** Pick any finite number of points in a Hilbert space. If they coincide with vertices of a parallelepiped then the sum of the squares of the lengths of its sides equals the sum of the squares of the lengths of the diagonals (parallelogram law). If the points are in a general position then we can define sides and diagonals by labeling these points via vertices of the discrete cube {0,1}^n. In this case the sum of the squares of diagonals is bounded by the sum of the squares of its sides no matter how you label the points and what n you choose. In a general Banach space we do not have parallelogram law. Back in 1978 Enflo asked: in an arbitrary Banach space if the sum of the squares of diagonals is bounded by the sum of the squares of its sides for all parallelepipeds (up to a universal constant), does the same estimate hold for any finite number of points (not necessarily vertices of the parallelepiped)? In the joint work with Ramon van Handel and Sasha Volberg we positively resolve Enflo's problem. Banach spaces satisfying the inequality with parallelepipeds are called of type 2 (Rademacher type 2), and Banach spaces satisfying the inequality for all points are called of Enflo type 2. In particular, we show that Rademacher type and Enflo type coincide.

Tuesday, March 23, 2021

Tuesday, March 30, 2021

Tuesday, April 6, 2021

Wednesday, April 14, 2021

Tuesday, April 20, 2021

Monday, April 26, 2021

Tuesday, April 27, 2021

Tuesday, May 4, 2021