Department of

Mathematics


Seminar Calendar
for events the day of Friday, April 8, 2022.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
      March 2022             April 2022              May 2022      
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
        1  2  3  4  5                   1  2    1  2  3  4  5  6  7
  6  7  8  9 10 11 12    3  4  5  6  7  8  9    8  9 10 11 12 13 14
 13 14 15 16 17 18 19   10 11 12 13 14 15 16   15 16 17 18 19 20 21
 20 21 22 23 24 25 26   17 18 19 20 21 22 23   22 23 24 25 26 27 28
 27 28 29 30 31         24 25 26 27 28 29 30   29 30 31            
                                                                   

Friday, April 8, 2022

1:00 pm in 147 Altgeld Hall,Friday, April 8, 2022

Graduate Analysis Seminar

Aric Wheeler (Indiana University)

Abstract: Generalizing results of Matthews-Cox/Sukhtayev for a model reaction-diffusion equation, we derive and rigorously justify weakly nonlinear amplitude equations governing general Turing bifurcation in the presence of conservation laws. In the nonconvective, reaction-diffusion case, this is seen similarly as in Matthews-Cox, Sukhtayev to be a real Ginsburg-Landau equation weakly coupled with a diffusion equation in a large-scale mean-mode vector comprising variables associated with conservation laws. In the general, convective case, by contrast, the amplitude equations consist of a complex Ginsburg-Landau equation weakly coupled with a singular convection-diffusion equation featuring rapidly-propagating modes with speed $\sim 1/\epsilon$ where $\epsilon$ measures amplitude of the wave as a disturbance from a background steady state. Applications are to biological morphogenesis, in particular vasculogenesis, as described by the Murray-Oster and other mechanochemical/hydrodynamical models. This work is joint with Kevin Zumbrun.

3:00 pm in 341 Altgeld Hall,Friday, April 8, 2022

Towards a universal property of the ∞-equipment of enriched (∞,1)-categories

Samuel Hsu (UIUC Math)

Abstract: One way or another, enriched 1-category theory has held an important spot in the study of homological and homotopical phenomena practically since the very start of ordinary category theory. For many purposes, enriched 1-categories or their model 1-categorical counterparts are simply too rigid, or they might not even exist at all. In recent years various models of enriched (∞,1)-categories have been introduced, and some comparisons at differing levels have been made e.g. the underlying parameterizing ∞-operads or their ∞-categories (with a closed left action over Cat_∞). We are interested in a universal property that can compare these theories at a level which can detect pointwise Kan extensions for example. Part of one approach to this involves upgrading the underlying machinery appearing in Gepner and Haugseng to the scaled simplicial setting. This talk will be heavily focused on examples and justifying why we would want such theories anyway. The only prerequisite is some knowledge of enriched 1-category theory and an appetite for homotopy theory. Time permitting, we may discuss the situation with enriched (∞,1)-operads and (∞,1)-properads, or other possible uses of intermediate results.