Department of

March 2021April 2021May 2021 Su Mo Tu We Th Fr SaSuMo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 1 2 3 1 7 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8 14 15 16 17 18 19 201112 13 14 15 16 17 9 10 11 12 13 14 15 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29 30 31

Tuesday, April 13, 2021

**Abstract:** One of the fundamental questions in number theory is to find primes in any subset of the natural numbers. In general, it's a difficult question and leads to open problems like the twin prime conjecture, Landau's problem and many more. Recently, Maynard considered the set of natural numbers with a missing digit and showed that it contains infinitely many primes whenever the base b ≥ 10. In fact, he has established the right order of the upper and the lower bounds when the base b = 10 and an asymptotic formula whenever b is large (say 2 × 10⁶). In this talk, we will consider the distribution of primes with a missing digit in arithmetic progressions for base b large enough. In particular, we will show an analog of the Bombieri-Vinogradov type theorems for primes with a missing digit for large base b. The proof relies on the circle method, which in turn is based on the Fourier structure of the digital set and the Fourier transform of primes over arithmetic progressions on an average. Finally, we will give its application to count the primes of the form p = 1 + m² + n² with a missing digit for a large base.

Wednesday, April 14, 2021

Thursday, April 15, 2021

Friday, April 16, 2021