Department of

August 2012 September 2012 October 2012 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 1 1 2 3 4 5 6 5 6 7 8 9 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13 12 13 14 15 16 17 18 9 10 11 12 13 14 15 14 15 16 17 18 19 20 19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27 26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31 30

Thursday, March 15, 2012

**Abstract:** By a "rational triangle" we mean a plane triangle whose sides are rational numbers. By Heron's formula, there exists such a triangle of area $\sqrt{a}$ if and only if $a > 0$ and $x y z (x + y + z) = a$ for some rationals $x, y, z$. In a 1749 letter to Goldbach, Euler constructed infinitely many such $(x, y, z)$ for any rational $a$ (positive or not), remarking that it cost him much effort, but not explaining his method. We suggest one approach, using only tools available to Euler, that he might have taken, and use this approach to construct several other infinite families of solutions. We then reconsider the problem as a question in arithmetic geometry: $xyz(x+y+z) = a$ gives a K3 surface, and each family of solutions is a singular rational curve on that surface defined over $\mathbb{Q}$. The structure of the Neron-Severi group of that K3 surface explains why the problem is unusually hard. Along the way we also encounter the Niemeier lattices (the even unimodular lattices in $\mathbb{R}^{24}$) and the non-Hamiltonian Petersen graph.

Tuesday, April 3, 2012

Wednesday, April 4, 2012

Tuesday, August 28, 2012

Tuesday, September 25, 2012

Tuesday, October 2, 2012

Tuesday, October 9, 2012

Tuesday, October 30, 2012

Tuesday, November 6, 2012

Tuesday, November 13, 2012

Tuesday, November 27, 2012

Tuesday, December 4, 2012