Department of

March 2017 April 2017 May 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 1 1 2 3 4 5 6 5 6 7 8 9 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13 12 13 14 15 16 17 18 9 10 11 12 13 14 15 14 15 16 17 18 19 20 19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27 26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31 30

Friday, April 21, 2017

**Abstract:** Suppose that a countable group $\Gamma$ acts continuously on a Polish space $X$ and denote this action by $\alpha$. Does there exist a Baire measurable coloring $f \colon X \to \mathbb{N}$ satisfying certain local constraints? Or, better to say, can we characterize the coloring problems which admit Baire measurable solutions over $\alpha$? We will show that, on the one hand, there is no such Borel characterization—the problem is complete analytic. On the other hand, when $\alpha$ is the shift action, we prove that, roughly speaking, a Baire measurable coloring exists if and only if it can be found by a greedy algorithm.