Department of

July 2017 August 2017 September 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 1 2 3 4 5 1 2 2 3 4 5 6 7 8 6 7 8 9 10 11 12 3 4 5 6 7 8 9 9 10 11 12 13 14 15 13 14 15 16 17 18 19 10 11 12 13 14 15 16 16 17 18 19 20 21 22 20 21 22 23 24 25 26 17 18 19 20 21 22 23 23 24 25 26 27 28 29 27 28 29 30 31 24 25 26 27 28 29 30 30 31

Tuesday, March 7, 2017

**Abstract:** We study the vertex cut-tree of Galton-Watson trees conditioned to have n leaves. This notion is a slight variation of Dieuleveut's vertex cut-tree of Galton-Watson trees conditioned to have n vertices. Our main result is a joint Gromov-Hausdorff -Prohorov convergence in the finite variance case of the Galton-Watson tree and its vertex cut-tree to Bertoin and Miermont's joint distribution of the Brownian CRT and its cut-tree. The methods also apply to the infinite variance case, but the problem to strengthen Dieuleveut's and Bertoin and Miermont's Gromov-Prohorov convergence to Gromov-Hausdorff-Prohorov remains open for their models conditioned to have n vertices. This is a joint work with Matthias Winkel.

Tuesday, March 14, 2017

Tuesday, March 28, 2017

Tuesday, April 4, 2017

Friday, April 7, 2017

Tuesday, April 11, 2017

Tuesday, April 18, 2017

Tuesday, April 25, 2017

Tuesday, May 2, 2017

Tuesday, September 5, 2017

Tuesday, September 12, 2017

Tuesday, September 19, 2017

Tuesday, October 3, 2017

Tuesday, October 10, 2017

Tuesday, October 17, 2017

Tuesday, October 24, 2017

Tuesday, October 31, 2017

Tuesday, November 14, 2017

Tuesday, November 28, 2017